
International Scholarly Research Network
ISRN Mathematical Analysis
Volume 2011, Article ID 469795, 14 pages
doi:10.5402/2011/469795

Research Article
Connecting Classical and Abstract Theory of
Friedrichs Systems via Trace Operator
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Based on recent progress in understanding the abstract setting for Friedrichs symmetric positive
systems by Ern et al. (2007), as well as Antonić and Burazin (2010), we continue our efforts to relate
these results to the classical Friedrichs theory. Following the approach via the trace operator, we
extend the results of Antonić and Burazin (2011) to situations where the important boundary field
does not consist only of projections, allowing the treatment of hyperbolic equations, besides the
elliptic ones.

1. Introduction

Over fifty years ago Friedrichs [1] showed that many partial differential equations of math-
ematical physics can be written as a first-order system of the form

Lu :=
d∑

k=1

∂k(Aku) + Cu = f, (1.1)

which was afterwards called the Friedrichs system or the symmetric positive system.
More precisely, it is assumed (we keep these assumptions throughout the rest of the

paper) that d, r ∈ N and that Ω ⊆ Rd is an open and bounded set with Lipschitz boundary
Γ (we will denote its closure by Cl Ω = Ω ∪ Γ). Real matrix functions Ak ∈ W1,∞(Ω;Mr(R)),
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k ∈ {1, . . . , d}, and C ∈ L∞(Ω;Mr(R)) satisfy

Ak is symmetric: Ak = A�
k, (F1)

(
∃μ0 > 0

)
C + C� +

d∑

k=1

∂kAk � 2μ0I (a.e. on Ω), (F2)

while f ∈ L2(Ω;Rr).
Quite often, even though a system does not satisfy the above conditions, it can be

symmetrised after multiplication by a positive definite matrix function. However, the choice
of such amultiplier is neither unique nor straightforward in general. An important advantage
of this framework is the fact that it can accommodate the equations which change their type,
such as the equations appearing in the mathematical models of transonic gas flow.

For the boundary conditions, Friedrichs [1] first defined

Aν :=
d∑

k=1

νkAk, (1.2)

where ν = (ν1, ν2, . . . , νd)
� is the outward unit normal on Γ, which is, as well as Aν, of class

L∞ on Γ (of course, Friedrichs considered more regular boundaries at the time). For a given
matrix field on the boundary M : Γ → Mr(R), the boundary condition is prescribed by

(Aν −M)u|Γ = 0, (1.3)

and by varyingM one can enforce different boundary conditions. Friedrichs required the fol-
lowing two conditions (for a.e. x ∈ Γ) to hold:

(∀ξ ∈ Rr) M(x)ξ · ξ � 0, (FM1)

Rr = ker(Aν(x) −M(x)) + ker(Aν(x) +M(x)), (FM2)

and suchM he called an admissible boundary condition. In the sequel we will refer to both prop-
erties (FM1) and (FM2) as (FM), and similarly in other such situations.

The boundary value problem thus reads the following: for given f ∈ L2(Ω;Rr) find u
such that

⎧
⎨

⎩
Lu = f,

(Aν −M)u|Γ = 0.
(BVP)

Of course, under such weak assumptions the existence of a classical solution
(C1 or W1,∞) cannot be expected. It can be shown that, in general, the solution belongs only to
the graph space of operator L:

W =
{
u ∈ L2(Ω;Rr) : Lu ∈ L2(Ω;Rr)

}
. (1.4)
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W is a separable Hilbert space (see, e.g., [2])with the inner product (the corresponding norm
will be denoted by ‖ · ‖L)

〈u | v〉L := 〈u | v〉L2(Ω;Rr) + 〈Lu | Lv〉L2(Ω;Rr), (1.5)

in which the restrictions of functions from C∞
c (R

d;Rr) to Ω are dense.
However, with such aweak notion of solution in a quite large space, the question arises

how to interpret the boundary condition. It is not a priori clear what would be the meaning
of restriction u|Γ for functions u from the graph space. Recently (cf. [2, 3]; for standard results
regarding the traces of functions defined in Lipschitz domains we refer to [4]), it has been
shown thatAνu|Γ can be interpreted as an element ofH−1/2(Γ;Rr). Namely, on the graph space
we can define operator T : W −→ H−1/2(Γ;Rr), which for u, v ∈ H1(Ω;Rr) satisfies

H−1/2(Γ;Rr)〈Tu,TH1v〉H1/2(Γ;Rr) = 〈Lu | v〉L2(Ω;Rr) −
〈
u | L̃v

〉

L2(Ω;Rr)

=
∫

Γ
Aν(x)TH1u(x) · TH1v(x)dS(x),

(1.6)

whereTH1 stands for the trace operatorTH1 : H1(Ω;Rr) → H1/2(Γ;Rr), and L̃ : L2(Ω;Rr) →
D′(Ω;Rr), the formally adjoint operator to L, is defined by

L̃v := −
d∑

k=1

∂k
(
A�

kv
)
+

(
C� +

d∑

k=1

∂kA�
k

)
v. (1.7)

In general, T is not an operator onto H−1/2(Γ;Rr) but still has a right inverse (the lifting op-
erator) E : im T → W⊥

0 < W , which satisfies

TEg = g, g ∈ im T. (1.8)

Here, W0 denotes the closure of C∞
c (Ω;Rr) in W , while W⊥

0 denotes its orthogonal com-
plement in W . As im T is not necessarily closed in H−1/2(Γ;Rr), neither E is necessarily
continuous.

Using this trace operator, the appropriate well-posedness results for the weak formu-
lation of (BVP), under additional assumptions, have been proven [3, 5].

More recently, the Friedrichs theory has been rewritten in an abstract setting by Ern
and Guermond [6] and Ern et al. [7], in terms of operators acting on Hilbert spaces, such that
the traces on the boundary have not been explicitly used. Instead, the trace operator has been
replaced by the boundary operator D ∈ L(W ;W ′) defined, for u, v ∈ W , by

W ′ 〈Du, v〉W := 〈Lu|v〉L2(Ω;Rr) − 〈u|L̃v〉L2(Ω;Rr). (1.9)

The boundary operator D can also be expressed [2, 7] via matrix function Aν:

(
∀u, v ∈ H1(Ω;Rr)

)
W ′ 〈Du, v〉W =

∫

Γ
Aν(x)TH1u(x) · TH1v(x)dS(x). (1.10)
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In the light of expressions (1.10) and (1.6), it is clear that T and D are somehow
connected. However, Tmaps intoH−1/2(Γ;Rr), while the codomain ofD isW ′, and it appears
thatD has better properties than the trace operator. Namely, using the operator D instead of T
in [7], the following weak well-posedness result has been shown.

Theorem 1.1. Assume that there exists an operatorM ∈ L(W ;W ′) satisfying

(∀u ∈ W) W ′ 〈Mu,u〉W � 0, (M1)

W = ker(D −M) + ker(D +M). (M2)

Then, the restricted operators

L|ker(D−M) : ker(D −M) −→ L2(Ω;Rr), L̃|ker(D+M∗) : ker(D +M∗) −→ L2(Ω;Rr) (1.11)

are isomorphisms.

The operator M from the theorem is also called the boundary operator, as ker M =
ker D = W0.

After rewriting the abstract theory of Ern et al. [7] in terms of Kreı̆n spaces [2, 8, 9] and
closing the questions they left open, in papers [10, 11]we investigated the precise relationship
between the classical Friedrichs theory and its abstract counterpart and applied the new
results on some examples.

To be specific, as the analogy between the properties (M) for operator M and the
conditions (FM) for matrix boundary condition M is apparent, a natural question to be in-
vestigated is the nature of the relationship between the matrix field M and the boundary
operatorM. More precisely, our goal was to find additional conditions on the matrix field M
with properties (FM)which will guarantee the existence of a suitable operatorM ∈ L(W ;W ′),
with properties (M).

For a given matrix field M, which M will be a suitable operator? The condition is sat-
isfied by such an operator M that the result of Theorem 1.1 really presents the weak well-pos-
edness result for (BVP) in the following sense: if, for given f ∈ L2(Ω;Rr), u ∈ ker(D−M) is such
that Lu = f, where we additionally have u ∈ C1(Ω;Rr) ∩C(Cl Ω;Rr), then u satisfies (BVP) in
the classical sense.

With such a connection between M and the boundary operator M, applications of the
abstract theory to some equations of particular interest will become easier, as calculations
with matrices are simpler than those with operators. We also take it as a first step towards
better understanding of the relation between the existence and uniqueness results for the
Friedrichs systems as in [7, 8] and the earlier classical results [1, 3, 5].

In [10]we have established this connection betweenM andM using two different ap-
proaches: via boundary operatorD and via the trace operator T. Based on (1.10) and (1.6), in
both these approaches we look forM of the form (see [6])

(
∀u, v ∈ H1(Ω;Rr)

)
W ′ 〈Mu, v〉W =

∫

Γ
M(x)TH1u(x) · TH1v(x)dS(x), (1.12)

where we naturally assume that M is bounded, that is, M ∈ L∞(Γ;Mr(R)), and both the ap-
proaches make use of the following lemma.
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Lemma 1.2. Let matrix function M satisfy (FM1). Then, the following statements are equivalent.

(a) M satisfies (FM2).

(b) For almost every x ∈ Γ, there is a projector S(x), such that M(x) = (I − 2S�(x))Aν(x).

(c) For almost every x ∈ Γ, there is a projector P(x), such that M(x) = Aν(x)(I − 2P(x)).

As properties (FM) do not guarantee that the preceding formula defines a continuous
operator M : W → W ′ satisfying (M), we have found [10] two different sets of additional
conditions under which the desired properties are satisfied. The conditions that we got by
using the trace operator are given in the next theorem.

Theorem 1.3. Assume that the matrix field M ∈ L∞(Γ;Mr(R)) satisfies (FM) and that by (1.12)
an operator M ∈ L(W ;W ′) is defined. Then, (M1) holds.

Let the matrix function S from Lemma 1.2 additionally satisfy S ∈ C0,1/2(Γ;Mr(R)). If by
S ∈ L(H1/2(Γ;Rr)) one denotes the multiplication operator

S(z) := Sz, z ∈ H1/2(Γ;Rr), (1.13)

by S∗ ∈ L(H−1/2(Γ;Rr)) its adjoint operator defined by

H−1/2(Γ;Rr)〈S∗T, z〉H1/2(Γ;Rr) := H−1/2(Γ;Rr)〈T,Sz〉H1/2(Γ;Rr), T ∈ H−1/2(Γ;Rr), z ∈ H1/2(Γ;Rr),
(1.14)

and by T : W → H−1/2(Γ;Rr) the trace operator, then the condition S∗(im T) ⊆ im T implies
(M2).

The representation of M as a product of Aν by some matrix field I − 2S� is the es-
sential ingredient in the proof of Theorem 1.3. However, in [11] we have noted that the re-
quirement for S to be a projector appears overly restrictive in applications (this seems to be
particularly true for hyperbolic equations), which motivated further investigation of possible
improvements of Lemma 1.2. As a result we have realised that S needs to be a projector only
at points where Aν is a regular matrix. Our goal here is to verify whether Theorem 1.3 (or
some variant of it) holds in case when S is not a projector.

The paper is organised as follows. In Section 2 we propose an extension of the method
from [10], the main result being Theorem 2.5. On the part of the boundary where Aν is
singular, the matrix S appearing in Lemma 1.2(b) need not necessarily be a projector. This
allows the treatment of hyperbolic equations, which is illustrated by an example in Section 3,
where we also provide two sufficient conditions ensuring the assumptions of Theorem 2.5.
Finally, in Section 4 we investigate whether we can get better results by using P instead of S.

2. Approach via Trace Operator When S Is Not a Projector

Lemma 2.1. Let matrix function M ∈ L∞(Γ;Mr(R)) satisfy (FM1). Then the following statements
are equivalent:

(a) M satisfies (FM2).

(b) For almost every x ∈ Γ, there is a matrix S(x), such that M(x) = (I − 2S�(x))Aν(x) and

ker(Aν(x)S(x)) + ker(Aν(x)(I − S(x))) = Rr . (2.1)
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(c) For almost every x ∈ Γ, there is a matrix P(x), such that M(x) = Aν(x)(I − 2P(x)) and

ker(Aν(x)P(x)) + ker(Aν(x)(I − P(x))) = Rr . (2.2)

Proof. As forM from (c)we have Aν −M = 2AνP and Aν +M = 2Aν(I−P); thus (FM2) holds.
Note also that by Lemma 1.2, the part (a) implies (c).

In order to prove that (b) is equivalent to (a) and (c), we use thewell-known fact [1, 12]
thatM satisfies (FM) if and only ifM� satisfies (FM). By (c) this is equivalent to the existence
of S such thatM� = Aν(I− 2S) and ker(AνS) +ker(Aν(I−S)) = Rr a.e. on Γ, which is actually
equivalent to (b).

Remark 2.2. Note that P and S from the previous lemma also satisfy

ker
(
S�Aν

)
+ ker

((
I − S�

)
Aν

)
= Rr a.e. on Γ,

ker
(
P�Aν

)
+ ker

((
I − P�

)
Aν

)
= Rr a.e. on Γ.

(2.3)

This is a consequence of the already-mentioned statement thatM satisfies (FM) if and only if
M� satisfies (FM). It is also obvious that S�Aν = AνP a.e. on Γ.

Remark 2.3. The result of Lemma 2.1 improves that of Lemma 1.2. We distinguish two situ-
ations that can occur at a fixed point x ∈ Γ (which we suppress in writing below).

IfAν is a regular matrix, then (for P as in Lemma 2.1) ker(AνP) = kerP and ker(Aν(I−
P)) = ker(I−P), and therefore ker(AνP)+ker(Aν(I−P)) = Rr is equivalent to kerP+ker(I−P) =
Rr , which is equivalent to the statement that P is a projector.

If Aν is not regular, then there can be several matrices P, which are not projectors but
nevertheless satisfy ker(AνP) + ker(Aν(I − P)) = Rr . For example, any matrix P, such that
im P ⊆ ker Aν or im(I − P) ⊆ ker Aν, would satisfy ker(AνP) + ker(Aν(I − P)) = Rr , as for
such P either ker(AνP) = Rr or ker(Aν(I − P)) = Rr .

The similar statements hold for S.

A variant of the following lemma has been proved in [11].

Lemma 2.4. IfM satisfies (FM), then for P and S as in Lemma 2.1 one has

AνP(I − P) = Aν(I − P)P = AνS(I − S) = Aν(I − S)S = 0 a.e. on Γ. (2.4)

Proof. Any w ∈ Rr can be decomposed as w = ξ+η such that ξ ∈ ker(AνP) and η ∈ ker(Aν(I−
P)). Now using AνP = S�Aν we easily get

AνP(I − P)w = AνP(I − P)ξ +AνP(I − P)η

= AνPξ − S�AνPξ + S�Aν(I − P)η = 0,
(2.5)

which concludes the proof for P, while for S one can argue analogously.
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Next we prove a new version of Theorem 1.3, with S not necessarily being a projector.

Theorem 2.5. Assume that the matrix field M ∈ L∞(Γ;Mr(R)) satisfies (FM) and that by (1.12)
an operator M ∈ L(W ;W ′) is defined. Then (M1) holds.

Let the matrix function S from Lemma 2.1 additionally satisfy S ∈ C0,1/2(Γ;Mr(R)) such that
the multiplication operator S defined by (1.13) belongs to L(H1/2(Γ;Rr)). If one denotes by S∗ ∈
L(H−1/2(Γ;Rr)) the adjoint operator of S and by T : W → H−1/2(Γ;Rr) the trace operator on the
graph space, then the condition S∗(im T) ⊆ im T implies (M2).

Proof. It only remains to show (M2). First we prove

S∗(IH−1/2 − S∗)T = (IH−1/2 − S∗)S∗T = 0, (2.6)

where IH−1/2 is the identity on H−1/2(Γ;Rr). By using Lemma 2.4, for u ∈ H1(Ω;Rr) and z ∈
H1/2(Γ;Rr) we have

H−1/2(Γ;Rr)〈S∗(IH−1/2 − S∗)Tu, z〉H1/2(Γ;Rr)

= H−1/2(Γ;Rr)〈Tu, (IH1/2 − S)Sz〉H1/2(Γ;Rr)

=
∫

Γ
Aν(x)TH1u(x) · (I − S(x))S(x)z(x)dS(x)

=
∫

Γ
S�(x)

(
I − S�(x)

)
Aν(x)TH1u(x) · z(x)dS(x)

=
∫

Γ
(Aν(x)(I − S(x))S(x))�TH1u(x) · z(x)dS(x)

= 0,

(2.7)

where IH1/2 : H1/2(Γ;Rr) → H1/2(Γ;Rr) is the identity. Therefore, S∗(IH−1/2 − S∗)Tu = 0 for
every u ∈ H1(Ω;Rr), and, since H1(Ω;Rr) is dense in W , we have (2.6).

Just as in the proof of [10, Theorem 2], we will use the representations of operators D
and M through the trace operator T; for u ∈ W and v ∈ H1(Ω;Rr), we have

W ′ 〈Du, v〉W = H−1/2(Γ;Rr)〈Tu,TH1v〉H1/2(Γ;Rr),

W ′ 〈Mu, v〉W = H−1/2(Γ;Rr)〈(IH−1/2 − 2S∗)Tu,TH1v〉H1/2(Γ;Rr).
(2.8)

By assumption S∗(im T) ⊆ im T, for given w ∈ W , we can define

u := w − ES∗Tw, v := ES∗Tw, (2.9)

where E : im T −→ W is the right inverse of the operator T, as before. Obviously, the decom-
position w = u + v is valid.
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Let us show that u ∈ ker(D −M): for s ∈ H1(Ω;Rr) by (2.6) and (2.8)we get

W ′ 〈(D −M)u, s〉W = H−1/2(Γ;Rr)〈2S∗Tu,TH1s〉H1/2(Γ;Rr)

= H−1/2(Γ;Rr)〈2S∗T(w − ES∗Tw),TH1s〉H1/2(Γ;Rr)

= H−1/2(Γ;Rr)〈2S∗(IH−1/2 − S∗)Tw,TH1s〉H1/2(Γ;Rr) = 0,

(2.10)

thus (D −M)u = 0, asH1(Ω;Rr) is dense inW .
It remains to show that v ∈ ker(D+M). For s ∈ H1(Ω;Rr), similarly as above, it follows

that

W ′ 〈(D +M)v, s〉W = H−1/2(Γ;Rr)〈2(IH−1/2 − S∗)Tv,TH1s〉H1/2(Γ;Rr)

= H−1/2(Γ;Rr)〈2(IH−1/2 − S∗)TES∗Tw,TH1s〉H1/2(Γ;Rr)

= H−1/2(Γ;Rr)〈2(IH−1/2 − S∗)S∗Tw,TH1s〉H1/2(Γ;Rr) = 0,

(2.11)

thus (D +M)v = 0 and we have the claim.

Theorem 2.5 provides us with sufficient conditions for continuous operator M : W →
W ′, defined by (1.12), to satisfy (M). A natural question arises whether these conditions are
feasible. The condition S ∈ C0,1/2(Γ;Mr(R)) does not appear particularly restrictive, as it is
expected that the continuity of M requires even higher regularity of S (see [10]). However,
the other condition, requiring that the image of the trace operator is invariant under S∗

appears somewhat artificial and unnatural. This is particularly true because in all examples
to which we have applied the theory of Friedrichs systems [10] this condition is satisfied. At
this point we still do not know whether it is always fulfilled.

3. On Feasibility of Assumptions

The following example illustrates the applicability of Theorem 2.5 for hyperbolic equations,
in a simple situation.

Example 3.1. The wave equation utt − γ2uxx = f can be written as the following symmetric
system for u = (u, ut + γux):

∂t

([
1 0

0 1

]
u

)
+ ∂x

([
γ 0

0 −γ

]
u

)
+

[
0 −1
0 0

]
u =

[
0

f

]
. (3.1)

After introducing a new unknown v := e−λtu, we obtain a positive symmetric system (for
λ > 0 large enough)

∂t

([
1 0

0 1

]
v

)
+ ∂x

([
γ 0

0 −γ

]
v

)
+

[
λ −1
0 λ

]
v =

[
0

e−λtf

]
. (3.2)
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As

Aν =

[
ν1 + γν2 0

0 ν1 − γν2

]
, (3.3)

in order tomake calculations simpler, we take domainΩ ⊆ R2 to be a parallelogramwith sides
laying on the characteristic lines x ± γt = ±1 of the original wave equation, as presented in
Figure 1. The straight parts of the boundary (open segments) are denoted by Γ1, . . . ,Γ4.

Let us take a matrix function S ∈ C0,1/2(Γ;M2(R))with the entries

S =

[
a b

c d

]
, (3.4)

and considerM = (I−2S�)Aν. Depending on the particular part of the boundary, matrix func-
tion M satisfies (FM) if and only if

on Γ1 : c = 0, d = 0,
on Γ2 : c = 0, d = 1,
on Γ3 : a = 0, b = 0,
on Γ4 : a = 1, b = 0.

(3.5)

A straightforward calculation gives us the formula for T on H1(Ω;R2):

T(u,w) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(0,TH1w), on Γ1,

(0,−TH1w), on Γ2,

(TH1u, 0), on Γ3,

(−TH1u, 0), on Γ4.

(3.6)

Multiplying with possible values of S� given above, for any (u,w) ∈ H1(Ω;R2)we have

S∗T(u,w) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, on Γ1,

T(u,w), on Γ2,

0, on Γ3,

T(u,w), on Γ4,

(3.7)

and one can easily check that this equals T(ũ, w̃) with ũ = (1 − x − γt)u/2 and w̃ = (1 + x −
γt)w/2. By the density ofH1(Ω;R2) inW , the continuity of S∗ ∈ L(H−1/2(Γ;R2)) and the fact
that T ∈ L(W ;H−1/2(Γ;R2)), as well as the continuity of linear mapping (u, v) �→ (ũ, w̃) from
W toW , we infer that the equality S∗T(u,w) = T(ũ, w̃) is valid for (u,w) ∈ W . Therefore, by
this construction, we obtained the inclusion S∗(im T) ⊆ im T.
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Γ4 Γ1

Γ2 Γ3

t

x

Ω

Figure 1: An example of the domain Ω; the wave equation.

The corresponding boundary operator M : W → W ′ is continuous, so we can apply
Theorem 2.5. It is simple to interpret the boundary conditions: they are not imposed on the
part Γ1 ∪ Γ3 of the boundary (as Aν − M = 0 there), while the boundary condition on Γ2 is
w = 0 and on Γ4 we have u = 0 (as Aν −M = Aν on these parts of the boundary).

The arguments used in this example are particularly simple due to the specific form of
boundary Γ. Let us consider a more complicated pentagonal domain: cut the set Ω by
a horizontal line and introduce a new horizontal part Γ5 of the boundary (on the top ofΩ). A
similar calculation leads us to the following relations that should be satisfied on Γ5:

a ≤ 1
2
, d ≥ 1

2
, a + d = 1 , ad = bc, (b − c)2 ≤ (1 − 2a)(2d − 1), (3.8)

and to the following equalities on Γ5 (valid for (u,w) ∈ H1(Ω;R2)),

T(u,w) = (TH1u,−TH1w),

S∗T(u,w) = (aTH1u − cTH1w, bTH1u − dTH1w).
(3.9)

However, the inclusion S∗(im T) ⊆ im T is no longer obvious, as functions a, b, c, and d can
be chosen quite arbitrarily.

Next we present some sufficient conditions which can be used to show thatS∗(im T) ⊆
im T.

Theorem 3.2. Let S,P ∈ C0,1/2(Γ;Mr(R)) be matrix functions and S,P ∈ L(H1/2(Γ;Rr)) cor-
responding multiplication operators defined as in (1.13), and let S�Aν = AνP a.e. on Γ. Then
T(H1(Ω;Rr)) is invariant underS∗. If one additionally assumes that im T is closed inH−1/2(Γ;Rr),
then one also has S∗(im T) ⊆ im T.
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Proof. For u ∈ H1(Ω;Rr) and z ∈ H1/2(Γ;Rr), we have

H−1/2(Γ;Rr)〈S∗Tu, z〉H1/2(Γ;Rr)

= H−1/2(Γ;Rr)〈Tu,Sz〉H1/2(Γ;Rr)

=
∫

Γ
Aν(x)TH1u(x) · S(x)z(x)dS(x)

=
∫

Γ
S�(x)Aν(x)TH1u(x) · z(x)dS(x)

=
∫

Γ
Aν(x)P(x)TH1u(x) · z(x)dS(x)

=
∫

Γ
Aν(x)TH1EH1P(x)TH1u(x) · z(x)dS(x)

= H−1/2(Γ;Rr)〈TEH1PTH1u, z〉H1/2(Γ;Rr),

(3.10)

where EH1 : H1/2(Γ;Rr) → H1(Ω;Rr) is the right inverse of the trace operator TH1 . There-
fore, on H1(Ω;Rr), we have S∗T = TEH1PTH1 , and in particular S∗T(H1(Ω;Rr)) ⊆
T(H1(Ω;Rr)).

Let us now additionally assume that im T is closed inH−1/2(Γ;Rr). For u ∈ W , let un ∈
H1(Ω;Rr) be a sequence converging to u inW . Then by continuity we also have

S∗Tun −→ S∗Tu in H−1/2(Γ;Rr), (3.11)

while, from the equality S∗Tun = TEH1PTH1un ∈ im T and the closedness of im T in
H−1/2(Γ;Rr), it follows that S∗Tu ∈ im T, which concludes the proof.

Note that in the above theorem S and P were arbitrary elements of C0,1/2(Γ;Mr(R)),
not necessarily having properties from Lemma 2.1.

We close this section with a theorem showing that, if we impose conditions that ensure
continuity ofM defined by (1.12), thenwe also haveS∗(im T) ⊆ im T. These conditions were
used in applications of the theory of Friedrichs systems in [11], and it is important to note
that we do not expect them to be necessary for continuity of M, but only sufficient.

Theorem 3.3. Let S ∈ C0,1/2(Γ;Mr(R)) be a matrix function and S ∈ L(H1/2(Γ;Rr)) the corre-
sponding multiplication operator defined by (1.13), and let P : Γ → Mr(R) be such that S�Aν = AνP
a.e. on Γ. Additionally assume that P can be extended to a measurable matrix function Pp : Cl Ω →
Mr(R) satisfying the following.

(S1) The multiplication operator Pp, defined by Pp(v) := Ppv for v ∈ W is a bounded linear op-
erator on W .

(S2) (∀v ∈ H1(Ω;Rr)) Ppv ∈ H1(Ω;Rr) & TH1(Ppv) = PTH1v.

Then S∗T = TPp, and thus S∗(im T) ⊆ im T.
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Proof. Similarly as in the proof of the previous theorem, for each u ∈ H1(Ω;Rr) and z ∈
H1/2(Γ;Rr) we have

H−1/2(Γ;Rr)〈S∗Tu, z〉H1/2(Γ;Rr)

= H−1/2(Γ;Rr)〈Tu,Sz〉H1/2(Γ;Rr)

=
∫

Γ
Aν(x)TH1u(x) · S(x)z(x)dS(x)

=
∫

Γ
S�(x)Aν(x)TH1u(x) · z(x)dS(x)

=
∫

Γ
Aν(x)P(x)TH1u(x) · z(x)dS(x)

=
∫

Γ
Aν(x)TH1

(
Pp(x)u(x)

)
· z(x)dS(x)

= H−1/2(Γ;Rr)〈TPpu, z〉H1/2(Γ;Rr),

(3.12)

and thus the equality S∗T = TPp is valid on H1(Ω;Rr). As all operators appearing in this
equality are bounded, whileH1(Ω;Rr) is dense inW , the same equality is valid onW , which
proves the claim.

4. Using P instead of S

In Theorem 2.5 a matrix function S was used in order to impose sufficient conditions for
(M) to hold. In Lemma 2.1 a matrix function P also appears, with a similar role as S, the
only difference being in the fact that in expression for M function P multiplies Aν from a
different side than S. Therefore, it is natural to check whether we could get a better result than
Theorem 2.5 by using P instead of S. In the next theorem we show what we have got by this
approach.

Theorem 4.1. Assume that the matrix field M ∈ L∞(Γ;Mr(R)) satisfies (FM) and that by (1.12)
a bounded operatorM ∈ L(W ;W ′) is defined. Then (M1) holds.

Let the matrix function P from Lemma 2.1 additionally satisfy P ∈ C0,1/2(Γ;Mr(R)), and let
P ∈ L(H1/2(Γ;Rr)) be the corresponding multiplication operator defined by P(z) := Pz. Then one
has

H1(Ω;Rr) ⊆ ker(D −M) + ker(D +M) . (4.1)
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Proof. As in the proof of Theorem 2.5, we shall use the representations of operators D andM
via trace operator T and multiplication operator P; for u ∈ H1(Ω;Rr) and v ∈ H1(Ω;Rr) we
have

W ′ 〈Du, v〉W =
∫

Γ
Aν(x)TH1u(x) · TH1v(x)dS(x)

=
∫

Γ
Aν(x)TH1v(x) · TH1u(x)dS(x)

= H−1/2(Γ;Rr)〈Tv,TH1u〉H1/2(Γ;Rr),

W ′ 〈Mu, v〉W =
∫

Γ
Aν(x)(I − 2P(x))TH1u(x) · TH1v(x)dS(x)

=
∫

Γ
Aν(x)TH1v(x) · (I − 2P(x))TH1u(x)dS(x)

= H−1/2(Γ;Rr)〈Tv, (IH1/2 − 2P)TH1u〉H1/2(Γ;Rr).

(4.2)

For given w ∈ H1(Ω;Rr) we define u := EH1PTH1w, where EH1 is the right inverse of
TH1 , as before.

Let us show that u ∈ ker(D +M). For v ∈ H1(Ω;Rr) by using (4.2) and Lemma 2.4 we
get

W ′ 〈(D +M)u, v〉W

= H−1/2(Γ;Rr)〈2Tv, (IH1/2 − P)TH1u〉H1/2(Γ;Rr)

= H−1/2(Γ;Rr)〈2Tv, (IH1/2 − P)TH1EH1PTH1w〉H1/2(Γ;Rr)

= 2
∫

Γ
Aν(x)TH1v(x) · (I − P(x))P(x)TH1w(x)dS(x)

= 2
∫

Γ
TH1v(x) ·Aν(x)(I − P(x))P(x)TH1w(x)dS(x) = 0,

(4.3)

thus (D +M)u = 0, asH1(Ω;Rr) is dense inW .
Similarly, we get

W ′ 〈(D −M)(w − u), v〉W = 2
∫

Γ
TH1v(x) ·Aν(x)P(x)(I − P(x))TH1w(x)dS(x) = 0, (4.4)

and thus (D −M)(w − u) = 0. As w = u + (w − u), we have the claim.

It appears that by using P instead of Swe do not get better results.
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